

Allyl Chloride

Molecular Weight: 76.5

CAS Registry No.: 107-05-1

Listing History: Allyl Chloride

- Listed under Proposition 65 on January 1, 1990
- Based on a report U.S. EPA (U.S. EPA, 1987)
 - Limited animal data
 - Supporting evidence: mutagenicity, metabolism to epichlorohydrin, alkylation properties.
- Classified as a Group C carcinogen (U.S. EPA, 1990)

Reviews by Other Authoritative Bodies

- IARC
 - Group 3 carcinogen (IARC, 1985; 1987, 1999)
 - Inadequate evidence in experimental animals and humans
- NCI
 - "Suggestive evidence" (NCI, 1978)
 - → Male and female B6C3F₁ mice, low incidence of rare forestomach neoplasms
 - → No convincing evidence in rats of either sex

Human Carcinogenicity Data: Allyl Chloride

- Three occupational epidemiological studies: potential exposure to allyl chloride
 - ◆Enterline et al., 1990: leukemia
 - ◆Olsen et al., 1994
 - ◆Tsai *et al.*, 1996

None of these studies is informative about the carcinogenic effects of allyl chloride.

Forestomach Tumors B6C3F₁ Mice (NCI, 1978)

		Dose, mg/kgbw-day			
Tumor Site and Type		vehicle	untreated	low	high
Males			0	175	199
Forestomach	Squamous Cell Carcinoma	0/20	0/20	2/46*	No survivors
Females			0	129	258
Forestomach	Squamous Cell Carcinoma	0/20	0/20	2/48	0/45
	Squamous Cell Papilloma	0/20	0/20	1/48	3/45

^{*}Metastases and additional leiomyosarcoma of the forestomach.

Precancerous lesions of the forestomach in exposed animals of both sexes

Lung Adenomas in Strain A Mice (Theiss et al., 1979)

		Dose, mg/kg _{bw}			
Tumor	Site and Type	control	low	mid	high
(Sexes	combined)	0	0.65	1.6	3.2
Lung	Adenoma: Tumors	0.19	0.6	0.5	0.60*
	per mouse	± 0.10	± 0.20	± 0.27	± 0.15

i.p. injection 3 times per week for 8 weeks

^{*}Significant relative to control by one of two tests used by study authors: carcinogenic effect was considered "intermediate".

Gavage Studies in Osborne-Mendel Rats (NCI, 1978)

		Dose	, mg/kg _b	_w -day
Tumor Site and Type		control	low	high
Males	No increased	0	57	77*
Females	tumor incidences	0	55	73*

78 w + 31-32 w observation

^{*} Severe early mortality in both sexes in high-dose groups.

Skin Painting Studies in Mice (Van Duuren *et al.*, 1979)

- Skin carcinogenicity:
 - ◆ 94 mg or 31 mg in acetone, 3 times per week (lifetime)
 - No tumors observed
- Initiation/promotion:
 - single application of 94 mg allyl chloride. After 14 d, 2.5 μg PMA 3 times per week
 - ◆ Skin papillomas in 7/30 mice, a significant (p<0.025) increase compared to PMA alone (9/120, 6/90)

Genotoxicity of Allyl Chloride

Species, strain	End-point	Result
Salmonella typhimurium		
100 (base substitution)	Reverse mutation	+ [
1535 (base substitution)	"	+
1538 (frame shift)	11	-
Escherischia coli		
Pol ⁺ /Pol ⁻	DNA modification	+
WP ₂ , WP ₂ uvrA	Reverse mutation	+
Saccharomyces cerevisiae		
D4	Gene conversion	+
JD1	11	+
Aspergillus nidulans	Gene segregation	+
Rat liver - epithelial type	Clastogenicity	_
cells, in vitro		
HeLa cells, in vitro	Unscheduled DNA synthesis	+

Alkylating Activity

- Allyl chloride, a direct acting mutagen, binds to DNA in vitro
 - ◆ 3 guanine & 2 adenine adducts
- Metabolic activation enhances mutagenic activity
 - epichlorohydrin DNA binding and DNA adducts in vivo & guanine adduct in vitro
 - glycidaldehyde DNA adducts in vivo & in vitro

Structure-Activity Comparisons

- Several allyl compounds are known mutagens and/or carcinogens
- The proposed metabolites
 epichlorohydrin and glycidaldehyde are
 listed as causing cancer under
 Proposition 65

Summary: Allyl Chloride

- Oral exposure: rare squamous cell forestomach tumors in male and female mice
- The confidence in these findings is reduced by:
 - Severe toxicity and mortality, and resulting low power of the study
 - Marginal statistical significance of the results
- The confidence in these findings is increased by:
 - Precancerous lesions in the forestomach of both sexes of mice
 - Genotoxicity in a number of test systems
 - ◆ DNA alkylation
 - Structural relationship to other known mutagens and carcinogens
 - Apparent formation of known carcinogens as its metabolites

Chlorodibromomethane

Molecular Weight: 208.29

CAS Registry. No.: 124-48-1

Listing History: CDBM

- Listed under Proposition 65 on January 1, 1990
- Originally classified by U.S. EPA as a Group B2 carcinogen (U.S. EPA, 1989)
- Currently classified as a Group C carcinogen (U.S. EPA, 1997)

Reviews by Other Authoritative Bodies

- IARC (1991) Group 3
 - ◆ Inadequate evidence humans
 - ◆ Limited evidence animals
- NTP (1985)
 - ◆ Some evidence in female B6C3F₁ mice
 - ◆ Equivocal evidence in male B6C3F₁ mice
 - No evidence in male or female F344/N rats

Carcinogenicity Data Available: CDBM

- Mouse chronic gavage studies (NTP, 1985)
 - Hepatocellular adenomas and carcinomas in female mice
 - ◆ Hepatocellular carcinomas in male mice
- Mouse chronic oral studies (Veronin et al., 1987)
 - ◆ No increased tumor incidence

Carcinogenicity Data Available: CDBM

- Rat chronic gavage studies (NTP, 1985)
 - No increased tumor incidence
- Rat chronic dietary studies (Tobe et al., 1982; as cited in U.S. EPA, 1997)
 - ◆ No increased tumor incidence

Mouse chronic gavage studies (NTP, 1985)

Tumor Site and Type		Dose Groups		
		Control	Low-dose	High-dose
Females				
Liver	Hepatocellular adenoma or carcinoma	6/50	10/49	19/50*
Males				
Liver	Hepatocellular carcinoma	10/50	**	19/50***
	Hepatocellular adenoma or carcinoma	23/50		27/50

^{*} p = 0.01

^{**} An accidental overdose caused the death of 35 low-dose males in week 58.

^{***} p = 0.03

Other Relevant Data: Genotoxicity of CDBM

Test System	Results
Salmonella typhimurium	+/-
Saccharomyces cerevisiae	+/-
Sister chromatid exchange	
Human lymphocytes in vitro, mouse bone marrow	+
cells in vivo, rat erythroblastic leukemia cells	
Chromosomal aberration	
Mouse lymphoma cells, Chinese hamster cells,	
rat bone marrow cells in vivo	+
Mouse bone marrow cells in vivo	
Micronucleus test, mouse bone marrow cells in vivo	-
Rat liver unscheduled DNA synthesis test in vivo	-
DNA strand break in rat kidney cells in vivo	_

SAR with Other Trihalomethanes: Chloroform, dichlorobromomethane, and bromoform

- CDBM, chloroform and dichlorobromomethane cause liver tumors in mice
- Similar dose-response for liver tumor induction
- Mutagenicities of brominated trihalomethanes can be mediated by GST1-1. Similar mutation spectra (DeMarini et al., 1997)

Dose-response of liver tumors with THMs

Summary: CDBM

- Liver tumors in mice
- Positive mutagenicity data
- Structural similarities with other carcinogenic trihalomethanes

1,1-Dichloroethane (1,1-DCA)

Molecular Weight: 98.96

CAS Registry No.: 75-34-31

Listing History: 1,1-DCA

- Listed under Proposition 65 on January 1, 1990
- Based on listing (B2) by
 US EPA, 1989 Health Effects
 Summary Tables
 - ◆ Based on NCI, 1978 bioassay
- US EPA Revised to Group C
 - ◆ Lack of evidence in humans
 - Limited evidence in rats and mice

Carcinogenicity Data Available: 1,1-DCA

- Humans
 - ◆ No evidence available
- Animals
 - NCI (1978)
 - ◆ M/F B6C3F₁ mice, gavage, 78 wk (+13 wk obs.)
 - ◆ M/F Osborne-Mendel rats, gavage, 78 wk (+33 wk obs.)

NCI (1978)

Survival (%) at end of study

Dose group

	Control	Low	High
Mouse males	55	62	32
Mouse females	80	80	50
Rat males	5	4	8
Rat female	20	16	18

Tumors in B6C3F₁ Mice (NCI, 1978)

	1,1-DCA by gavage in corn oil: 78 wk + 13 wk observation Dose Group		up		
Tumor S	ite and Type	pooled controls	low	high	Trend
Males					
Liver	Hepatocellular Carcinoma*	6/72	8/48	8/32 (p=0.027)	p=0.016
Females					
Uterus	Endometrial stromal polyps*	0/79	0/47	4/46 (p=0.017)	p=0.005

^{*} Statistically significant association (p<0.05) by survival analysis (Gold and Zeiger., 1997)

OEHHATumors in Osborne-Mendel Rats (NCI, 1978)

1,1-DCA by gavage in corn oil: 78 wk + 33 wk observation			Dose Group		
Tumor Site a	and Type	pooled controls	low	high	
Males					
		No treatment-related tumors		nors	
Females					Trend
Circulatory system	Hemangiosarcoma*	0/39	0/50	4/50 (p=0.09)	p=0.02
Mammary gland	Adenocarcinoma*	1/39	1/50	5/50	p=0.08

^{*} Statistically significant association (p<0.05) by survival analysis (Gold and Zeiger, 1997)

Other Relevant Data

- Tumor promotion studies
 - ◆ 1,1-DCA did not exhibit initiating potential
 - ◆ 1,1-DCA was positive as a tumor promoter
- DNA binding studies
 - ◆ 1,1-DCA administered in vivo to rats and mice resulted in covalent binding to DNA and other macromolecules

Other Relevant Data

• Genotoxicity

Test System	Response
Reverse Mutation, S. typhimurium	-
Reverse Mutation, S. typhimurium (closed	+
system)	
Induction of mitotic segregation, haploids and	+
non-disjuctional haploids; mitotic arrest,	
Aspergillus nidulans	
Cell transformation assay, BALB/c-3T3	-
DNA-repair test, rat and mouse hepatocytes	+
Viral transformation assay, Syrian Hamster	+
Embryo cells	
Fluorometric assay of alkaline DNA unwinding,	-
mouse in vivo	

Structure-Activity Comparisons

1,2-DCA: NCI, 1978 (gavage)

Male rats	<u>1,2-DCA</u>	<u>1,1-DCA</u>
◆ Forestomach squamous cell carcinomas	\checkmark	
◆ Circulatory system hemangiosarcomas	\checkmark	✓ (females)
Female rats		
 Mammary adenocarcinomas 	\checkmark	\checkmark
Male mice		
→ Hepatocellular carcinoma	\checkmark	\checkmark
◆ Lung adenoma	\checkmark	
Female mice		
◆ Endometrial stromal polyps	\checkmark	\checkmark
◆ Lung adenoma	\checkmark	
1,2-DCA non-positive by other routes		

Summary: 1,1-DCA

- Carcinogenicity
 - Observations of increased tumor incidences in male mice (liver), female mice (uterus -benign), and female rats (circulatory system and mammary gland)
 - Problems with study quality: high doses, low survival
 - ◆ Low tumor incidences
- Other relevant data
 - Positive genotoxicity
 - Chemical structural analogies
 - ◆ Tumor promoting activity

p-Toluidine

Molecular Weight: 107.15

CAS Registry No.: 106-49-0

Listing History: *p*-Toluidine

- Listed under Proposition 65 on January 1, 1990
- Originally classified by U.S. EPA as a Group B2 carcinogen (U.S. EPA, 1986)
- Subsequently reclassified as a Group C carcinogen (U.S. EPA, 1988)

Reviews by Other Authoritative Bodies

NIOSH

- ◆ 1992 Recommendations for Occupational Safety and Health, Compendium of Policy Documents and Statements
- "potential for cancer; tumors of the liver in animals"
- "should be designated" as a potential occupational carcinogen

Reviews by Other Authoritative Bodes (cont.)

- U.S. FDA (1998, 1999)
 - ◆ Impurity in dye (D&C Violet No. 2) used in surgical sutures and tacks
 - "carcinogenic impurity that may be present"
 - "p-toluidine is a carcinogen in the mouse"

Carcinogenicity Data Available: p-Toluidine

- Mouse long-term diet studies (Weisburger et al., 1978)
 - Increased hepatomas in male and female mice
- Male rat long-term diet study (Weisburger et al., 1978)
 - No increased tumor incidence

Liver Tumors in CD-1 Mice (Weisburger, 1978)

Tumor Site and Type		Dose Groups		
		Control	Low-dose	High-dose
Males		3/18 (simult.)		
Liver	hepatoma	7/99 (pooled)	8/17*	9/18**
Females		0/20 (simult.)		
Liver	hepatoma	1/102 (pooled)	2/21	3/17***

```
* p = 0.0014 (vs. pooled controls)
```

*** p = 0.009 (vs. pooled controls)

^{**} p = 0.038 (vs. simult. controls)

Other Relevant Data: p-Toluidine

- Non-positive mutagenicity assays in Salmonella and E. coli
- Increased unscheduled DNA synthesis in rat hepatocytes (Thompson et al., 1983)
- Decreased testicular DNA synthesis in mice following oral treatment (Seiler et al., 1977)
- Hepatic DNA binding in rats (Brock et al., 1990)

Summary: *p*-Toluidine

- NIOSH and U.S. FDA have designated p-toluidine as a carcinogen
- Scientific evidence supporting the designation was positive bioassays in male and female mice
- Other relevant data include positive DNA synthesis and hepatic DNA binding assays

Zineb

$$S \xrightarrow{S^{-}} S \xrightarrow{S^{-}} S$$

HN

NH

Molecular Weight: 275.7

CAS Registry No.: 12122-67-7

Listing History: Zineb

- Listed under Proposition 65 on January 1, 1990
- Originally classified by U.S. EPA as a Group B2 carcinogen (U.S. EPA, 1988)
- Entered into, then dropped from Special Review process
- Never re-classified

Reviews by Other Authoritative Bodies

- IARC (1976; 1987)
 - ◆ Group 3 carcinogen
 - insufficient evidence in animals
 - no human data

Carcinogenicity Data Available: Zineb

- Mouse sub-chronic oral studies (Chernov and Khitsenko, 1969)
 - Increased lung adenomas in C57BL mice
- Rat long-term oral studies (Mitsumori et al., 1979)
 - Increased thyroid tumors in rats (primarily cystic adenomas)

Lung Tumors in Mice (Chernov & Khitsenko, 1969)

C57BL mice	Dose (mg/kg _{bw})			
Lung adenomas	0	1750	3500	
High-dose study	0/87		6/79*	
Low-dose study	0/59	2/29		

Strain A mice	Dose (mg/kg _{bw})		
Lung adenomas	0		3500
High-dose study	30/97		35/101

^{*}Significant increase relative to controls (p < 0.05, by Fisher's Exact test)

Thyroid tumors in rats (Mitsumori et al., 1979)

- Rats (80/sex/group) treated with zineb in diet at 0, 40, 200, 1000, 5000 ppm for 130 weeks
- Increased thyroid tumors in males at 5000 ppm
 - ◆ 37.5% treated *vs.* 11.3% controls
 - primarily cystic adenomas
- Increased subcutaneous fibromas in males at 5000 ppm

Non-positive studies: Zineb

- Mouse oral studies (Innes et al., 1969) small; less-than-lifetime
- Mouse s.c. injection studies (NTIS, 1968) - small; less-than-lifetime
- Rat gavage and s.c. implant studies (Andrianova & Alekseev, 1970) - poor survival
- Rat oral studies (Blackwell-Smith et al., 1953) - small study

Other Relevant Data: Zineb

Species, strain	Endpoint	Results	Reference
Salmonella typhimurium	Reverse mutation	_ _	Croce <i>et al.</i> , 1995 Franekic <i>et al.</i> , 1994
Bacillus subtilis	DNA damage Mutation	+ +	Shiau <i>et al.</i> , 1980 Felkner <i>et al.</i> , 1981
Saccharomyces cerevisiae	Gene mutation Mitotic chromosome malsegregation	+ +	Franckic <i>et al.</i> , 1994 Croce <i>et al.</i> , 1995
Drosophila melanogaster	Genetic damage to somatic and germ cells Mutagenicity	+	Tripathy <i>et al.</i> , 1988 Benes and Sram, 1969
Human peripheral blood lymphocytes	Increased chromosome aberrations	+	Pilinskaya, 1974 (cited in IARC, 1976)

Other Relevant Data: Zineb

- Structural similarity to other ethylene bisdithiocarbamate carcinogens (mancozeb, maneb, metiram)
- Metabolized / degraded to ethylene thiourea

Summary: Zineb

- Animal evidence includes benign lung tumors in mice and primarily benign thyroid tumors in rats
- Supporting evidence includes:
 - Some evidence of genotoxicity
 - Structural similarity to known carcinogens
 - Metabolism / degradation to ETU, a known carcinogen, with site concordance